Trekantstyper
Øverst: Spidsvinklet trekant.
I midten: Retvinklet trekant.
Nederst: Stumpvinklet trekant.
Trekantstyper
Licens: CC BY SA 3.0

En trekant er i euklidisk geometri en polygon sammensat af tre linjestykker, kaldet trekantens sider eller kanter, der parvis mødes i trekantens tre hjørner, også kaldet vinkelspidser.

Vinkler og typer af trekanter

Pythagoras' sætning
For en retvinklet trekant med kateterne \(a\), \(b\) og hypotenusen \(c\), siger Pythagoras' sætning, at arealsummen af kvadraterne på kateterne er arealet af kvadratet på hypotenusen, altså at \(a^2+b^2=c^2\).
Pythagoras' sætning
Licens: CC BY SA 3.0

Vinkelsummen i en trekant er \(180^\circ\). Trekanten kaldes spidsvinklet, retvinklet eller stumpvinklet, alt efter om alle tre vinkler i trekanten er mindre end \(90^\circ\), en af vinklerne er ret, altså \(90^\circ\), eller en af vinklerne er større end \(90^\circ\). I en retvinklet trekant kaldes den længste side hypotenusen og de to korte sider kateter, og her gælder Pythagoras' sætning. Hvis alle tre sider er lige lange, kaldes trekanten ligesidet; i så fald er også alle tre vinkler lige store. Hvis to sider har den samme længde, kaldes trekanten ligebenet; i så fald er de to vinkler ved den tredje side også lige store.

Indskreven og omskreven cirkel for trekant

Indskreven og Omskreven Cirkel
Figuren viser den indskrevne cirkel (rød) og den omskrevne cirkel (blå) for en trekant (sort).
  • De tre vinkelhalveringslinjer for vinklerne i en trekant skærer hinanden i et fælles punkt, der er centrum for den indskrevne cirkel (rød farve).
  • De tre midtnormaler til siderne i en trekant skærer hinanden i et fælles punkt, der er centrum for den omskrevne cirkel (blå farve).
Indskreven og Omskreven Cirkel
Licens: CC BY SA 3.0

Linjestykket fra et hjørne vinkelret på linjen for den modstående side kaldes en højde i trekanten, og den modstående side kaldes i denne sammenhæng for den tilhørende grundlinje. Linjestykket fra et hjørne til midtpunktet af den modstående side kaldes en median. En linje, som halverer vinklen i et af trekantens hjørner, kaldes en vinkelhalveringslinje. I en trekant skærer linjerne for de tre højder hinanden i et fælles punkt. Også de tre medianer har et fælles skæringspunkt, som deler hver median i forholdet 1:2. De tre vinkelhalveringslinjer skærer hinanden i centrum for trekantens indskrevne cirkel, dvs. cirklen, der tangerer alle trekantens sider. Endelig mødes de tre midtnormaler til trekantens sider i centrum for trekantens omskrevne cirkel, dvs. cirklen gennem trekantens tre hjørner. Den såkaldte nipunktscirkel er en interessant cirkel, der går igennem midtpunkterne af trekantens sider.

Herons formel for arealet af en trekant

Arealet \(\mathcal{A}\) af en trekant beregnes som halvdelen af en vilkårlig højde \(h\) gange den tilhørende grundlinje \(g\), altså \(\mathcal{A}=\tfrac{1}{2 } hg\). En bemærkelsesværdig formel fundet af den oldgræske matematiker Heron udtrykker trekantens areal ved dens sider \(a,b,c\), nemlig \[\mathcal{A}=\sqrt{s(s-a)(s-b)(s-c)},\] hvor \(2s=a+b+c\) er omkredsen af trekanten.

På kuglefladen har man sfæriske trekanter; her er vinkelsummen større end \(180^\circ\). I hyperbolsk geometri har man hyperbolske trekanter; her er vinkelsummen mindre end \(180^\circ\).

Læs mere i Den Store Danske

Kommentarer

Kommentarer til artiklen bliver synlige for alle. Undlad at skrive følsomme oplysninger, for eksempel sundhedsoplysninger. Fagansvarlig eller redaktør svarer, når de kan.

Du skal være logget ind for at kommentere.

eller registrer dig